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Abstract Visual working memory (VWM) refers to the ability
to encode, store, and retrieve visual information. The two pre-
vailing theories that describe VWM assume that information is
stored either in discrete slots or within a shared pool of resources.
However, there is not yet a good understanding of the neural
mechanisms that would underlie such theories. To address this
gap, we provide a computationally realized neural account that
uses a pool of shared neurons to store information about one or
more distinct stimuli. The binding pool model is a neural net-
work that is essentially a hybrid of the slot and resource theories.
It describes how information can be stored and retrieved from a
pool of shared resources using a type/token architecture
(Bowman & Wyble in Psychological Review 114(1), 38–70,
2007; Kanwisher in Cognition 27, 117–143, 1987; Mozer in
Journal of Experimental Psychology: Human Perception and
Performance 15(2), 287–303, 1989). The model can store mul-
tiple distinct objects, each containing binding links to one or
more features. The binding links are stored in a pool of shared
resources and, thus, producemutual interference asmemory load
increases. Given a cue, the model retrieves a specific object and
then reconstructs other features bound to that object, alongwith a
confidencemetric. Themodel can simulate data from continuous
report and change detection paradigms and generates testable
predictions about the interaction of report accuracy, confidence,
and stimulus similarity. The testing of such predictions will help
to identify the boundaries of shared resource theories, thereby
providing insight into the roles of ensembles and context in
explaining our ability to remember visual information.
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Introduction

Whether we are completing a math problem or looking for
our car keys on a cluttered desk, working memory enables
success in a broad variety of tasks by foregrounding
particular pieces of information for easy access. An im-
portant and as yet unresolved question is the format and
mechanism of storage used by working memory. We
explore this question with a focus on visual working
memory (VWM), which specifically addresses the ability
to store and retrieve visual pattern information and is
distinct from a broader class of working memory capabil-
ities (e.g., Baddeley & Hitch, 1974; Oberauer, 2009). Our
goal is to construct a computational model of the neural
circuits involved in VWM function that can simulate a
broad range of existing data and provides a framework
for understanding the functional mechanisms involved in
visual memory storage.

We begin with a review of recent theory. Traditionally,
VWM experiments have asked subjects to detect changes
in sets of colored patches (Fig. 1a), and the results of such
experiments have supported a theory that describes the
structural nature of VWM in terms of discrete and inde-
pendent slots (Luck & Vogel, 1997; Vogel, Woodman &
Luck, 2001).

More recently, however, VWM experiments have recorded
estimates of the precision of memory traces by using contin-
uous variables, such as color (Fig. 1b), orientation, and spatial
frequency (Bays, Catalao & Husain, 2009; Huang & Sekuler,
2010; Prinzmetal, Amiri, Allen & Edwards, 1998; Wilken &
Ma, 2004). These experiments ask subjects to indicate, on a
spectrum, exactly what feature value a particular stimulus had,
and the variability of the responses reveals the precision of the
retrieved memory trace. These paradigms reveal graded dec-
rements in the quality of memory representations as set size
increases. These results, in conjunction with change detection
experiments involving complex stimuli (Alvarez &
Cavanagh, 2004), have challenged theories about independent
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slots and support an alternative theory in which VWM in-
volves a single fixed pool of resources that are divided across
the items stored in a memory set. However, advocates of the
slot model have suggested that these data do not disprove the
slot theory and point out further evidence in favor of discrete
representations (Awh, Barton & Vogel, 2007; W. Zhang &
Luck, 2008).

This controversy continues, and the intensity of the debate
between slot- and resource-based theorists has produced a
progression of increasingly complex experimental designs
(Bays, Gorgoraptis, Wee, Marshall & Husain, 2011a; Brady
& Tenenbuam, 2013; Fougnie, Asplund & Marois, 2010; Lin
& Luck, 2009; Orhan & Jacobs, 2013; Sims, Jacobs & Knill,
2012) and several mathematically descriptive models of
VWM (Fougnie & Alvarez, 2011; Sims et al., 2012; van den
Berg, Shin, Chou, George & Ma, 2012). Such models have
provided valuable quantitative comparisons between varia-
tions of these theories that have challenged existing notions
of slot-based models. Furthermore, computational models can
also play a pivotal role in cognitive science by providing a
formal specification of the mechanisms underlying a theoret-
ical position. Creating such simulations can reveal crucial
implicit assumptions of a theory, as well as the limits of a
theory’s explanatory power. Knowledge of such limitations
makes it easier to investigate the role of more complex

representations, such as ensembles, contextual effects, and
configural information (Alvarez & Cavanagh, 2004; Jiang,
Olson & Chun, 2000; Kahana & Sekuler, 20021).

The approach that is taken here is complementary to these
existing modeling approaches insomuch that elements of both
the slot-based and shared resource models are incorporated in the
proposedmodel. The proposedmodel can be considered a hybrid
model of the slot-based and shared resource models, thereby
contributing a mechanism by which these theories could be
conjoined. Moreover, this model provides a mechanistic account
of how discrete memory items can share neural resources in a
neurally plausible simulation. We argue that performance across
a variety of tasks cannot be adequately explained by slot or
resource models. The binding pool model demonstrates that a
broad spectrum of observed patterns of behavior can emerge
through an interaction of these two kinds of limitations.

This model is a neural network simulation of a storage
mechanism called the binding pool, in which memory traces
are stored as a set of binding links within a distributed pool of
neurons that is shared by multiple memory traces. The devel-
opment of this model has been constrained by data from
VWM paradigms that examine how changes in the complex-
ity of a visual display affect the ability to detect changes
(Keshvari, van den Berg & Ma, 2013) and to reconstruct a
specific stimulus (Bays et al., 2009). The model also exhibits a
number of inherent properties, such as the systematic interac-
tions between stored items (Huang & Sekuler, 2010), evi-
dence of binding-related errors (Wheeler & Treisman, 2002),
the ability to retrieve one feature value of an object on the
basis of another feature (Bays et al., 2011a), the impact of item
similarity on retrieval precision (Sims et al., 2012), and the
relationship between confidence and objective accuracy
(Rademaker, Tredway & Tong, 2012).

We begin with a description of the capabilities of VWM
that we consider as essential components of a model. We
follow this with an informal description of the binding pool
model, with a more formal description to follow in the
Appendix. The remaining sections will detail existing data
that the model explains and provide testable predictions about
how object complexity, forgetting, similarity, repetition, and
confidence affect performance on VWM tasks.

The functional constraints of visual working memory

In this context, functional constraints refer to the general
behavioral capabilities of human subjects in VWM tasks that
we consider necessary components of a general theory. We list
here a core set of capabilities specified at an abstract level.
Later in the article, specific empirical data will be used to
constrain the model further.

Time 

Time 

A

B

Fig. 1 Common visual working memory task designs. a In a whole-
display change detection task, subjects see a set of stimuli (in this
example, a red, blue, and yellow patch) and are asked to remember the
items. The items disappear after an encoding duration (typically 100–
500 ms), and following a retention interval of several hundred millisec-
onds, a new display is presented that may or may not contain a changed
item. Subjects determine whether or not an item has changed. In this
example, the red patch changed to green, so a correct response would be
to respond “Change.” b In a continuous report task, subjects see a set of
stimuli and are asked to remember the hues. In this task, once the stimuli
reappear, subjects are given a location cue (the light gray patch) to
recreate that specific hue by selecting a color along the color wheel with
a mouse click. The color wheel in this figure was generated using
MemToolbox (Suchow, Brady, Fougnie & Alvarez, 2013; http://
memtoolbox.org).

1 Kahana and Sekuler (2002) proposed what are essentially ensemble
representations, although they were not named as such explicitly.
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VWM is indexed and can store repetitions When presented
with multiple items, subjects are able to selectively retrieve
specific items presented at a given location (e.g., Wilken &
Ma, 2004). Furthermore, while repetitions can be more diffi-
cult to encode than nonrepeated items (Kanwisher, 1987; Luo
&Caramazza, 1996; Mozer, 1989), subjects are generally able
to see and report multiple copies of the same item. The ability
to encode repetitions is perhaps one of the most significant
constraints on a model of memory, since it precludes models
in which memories are stored within the same neurons that are
used to process the sensory input (for further discussion, see
Bowman & Wyble, 2007).

VWM is content addressable When presented with items con-
taining multiple features such as lines with varying colors and
orientations, subjects can retrieve, either the color of a line on
the basis of its orientation, or the orientation on the basis of its
color (Bays, Gorgoraptis, Catalao, Bays & Husain, 2011; van
Lamsweerde & Beck, 2012). In computer science terminolo-
gy, this is known as content addressable memory, which
means that any subset of the contents of a memory trace can
be used to retrieve the rest of it.

Multiple pieces of information stored in VWM produce mutual
interference Storing multiple pieces of information into mem-
ory reduces the precision of the individual memory traces.
This suggests either multiple that items compete for the same
representational space (Bays et al., 2009;Wilken &Ma, 2004)
or that multiple slots can be focused onto a small number of
items (W. Zhang & Luck, 2008). Furthermore, this interfer-
ence produces cross talk in that a stored item can pull the
memory of another item toward its own value along a contin-
uous feature dimension, such as spatial frequency (Huang &
Sekuler, 2010).

VWM contents can be rapidly encoded and rapidly
erased VWM storage is extremely mutable, such that a piece
of information presented on the screen is available for retrieval
almost immediately. Furthermore, stored information in visual
memory seems to be almost entirely erasable, such that a
given memory representation produces relatively little inter-
ference with a subsequent trial of a similar memory test
(Huang & Sekuler, 2010).2 This ability to discard information
rapidly presumably allows us to perform complex tasks in
rapid succession. If VWM contents could not be discarded
easily, interference between stored representations of multiple
stimuli might rapidly accrue and produce debilitating proac-
tive interference.

Neurophysiological constraints of visual working memory

To provide a model that can be readily mapped onto brain
mechanisms, the binding pool model was constructed through
the use of simple neural elements that are similar to the ele-
ments described in early work on the Perceptron (Block, 1962;
Rosenblatt, 1958). These simulated neurons can excite or in-
hibit one another and can store information by retaining a
specific activity level across time. Maintenance of information
through sustained activity might occur through either synaptic
self-excitation or intracellular mechanisms (Hasselmo,
Fransen, Dickson & Alonso, 2000). Another constraint of the
model is that the strength of connections between neurons is
not modifiable (at least within the timescale of a single trial of a
memory experiment). Therefore, in this model, the only means
by which information can be encoded and retrieved on the time
scale of seconds is to modify the activity levels of neurons.

The binding pool model

The binding pool model is a simulation at the neural level that
describes how information can be encoded in VWM.3 The
model will be described in an informal sense here and in
greater detail in the Appendix. Also, the complete simulation
code is available for download at http://wyblelab.com/
research_repos/models/bindingpool/.

Informal description of the model

The binding pool model describes how neural resources can
be dynamically allocated across one or more items in a mem-
ory display. Like the serial-order-in-a-box complex-spanmod-
el (Oberauer, Lewandowsky, Farrell, Jarrold & Greaves,
2012), this model does not store the presence or absence of
features; instead, it stores links between features. These stored
links connect features (types) to object files (tokens4) using a

2 There is proactive interference in verbal working memory (Keppel &
Underwood, 1962), but such interference does not seem to manifest
strongly in visual working memory paradigms (Hartshorne, 2008; Lin
& Luck, 2012).

3 The idea of a binding pool was first advanced in Bowman and Wyble
(2007) in the context of encoding a sequence of items and was extended
in later work (Wyble, Bowman & Nieuwenstein, 2009; Wyble, Potter,
Bowman & Nieuwenstein, 2011). In these papers, the binding pool could
only represent categorical stimuli and also lacked the ability to share
neural resources between distinct items. The binding pool, as described
here, uses representations that are shared between items and has the
ability to represent features along a continuum. This new binding pool
architecture can also represent categorical stimuli, and we assume that the
binding pool described in the aforementioned models represents the same
neural structure as this one.
4 This use of the type/token terminology derives from earlier work
(Bowman & Wyble, 2007). Note that there is a difference between the
uses of type and token here and in a philosophical/linguistic context, but
wemaintain the use of the terminology on the grounds that the underlying
idea is preserved. Types represent features of objects that might be
repeated across objects, and tokens represent instance-specific memory
representations.
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shared, amodal pool of nodes (binding pool). Essentially,
the binding pool acts as a switchboard that can encode
one or more binding links between the object files and
features (Fig. 2). When multiple links are stored in the
switchboard, there is an accumulation of cross talk
between them, producing a general loss of memory pre-
cision (Wilken & Ma, 2004), a drop in the ability to
detect changes (Keshvari et al., 2013), swap errors (Bays
et al., 2009), and systematic patterns of interference
between stimuli that manifest at retrieval (Huang &
Sekuler, 2010).

Types

In this model, types are used to represent abstract, high-
level features, such as color hue, line orientation, and
location. To represent a continuous variable, like color,
in a set of discrete neural units, each node represents a
specific point in color space, and colors that fall between
those values are interpolated by using multiple type nodes
(see the Appendix for details). Furthermore, to implement
the continuity of a representation, type nodes that repre-
sent similar feature values (i.e., two shades of red) share
more overlapping connections with the binding pool (see

below) than do nodes with more distal values. We assume
that the same continuity exists for other feature dimensions
(e.g., spatial frequency, color, location, etc.). For the sake
of conceptual and computational parsimony, at this point
we assume that distinct feature dimensions are fully sep-
arable, even though this is likely to be incorrect. Note that
the distinction of what constitutes a single feature is
assumed to reflect experience with particular kinds of
stimuli (VanRullen, 2009). Thus, it is probable that exten-
sive experience with specific feature pairings would reor-
ganize perceptual representations to create new “hard-
wired” feature bindings that can be represented as patterns
of type node activity without requiring active binding.

Tokens

The ability to individuate different objects that might share
features (especially when they share location) requires a form
of indexing, and tokens provide this capability. We assume
that at the presentation of a new stimulus display, the visual
system identifies individual objects by detecting closed con-
tours and creates tokens corresponding to each such object.
Note that this initial allocation of token placeholders is
grounded in the idea of place tokens as described by Marr
(1976) and object files as described by Kahneman and
Treisman (1984). For the purpose of parsimony, we abstract
over the mechanisms required to detect and track such objects
(e.g., Mihalas, Dong, von der Heydt & Niebur, 2011; Vul,
Frank, Alvarez & Tenenbuam, 2010). Once allocated, each of
these tokens can be linked to specific feature values (color,
orientation, etc.) using the binding pool.

The binding pool

The binding pool is a set of nodes that encodes information
about a visual stimulus using links that connect types to a
single token. This type–token binding process provides an
organizational structure for representing complex pieces of
information. Unlike other theories of working memory that
posit distinct representations of features and their bindings to
objects (Wheeler & Treisman, 2002), the only form of infor-
mation storage in the binding pool model are the binding
links. Thus, in this model, features cannot be stored in an
“unbound” state. Importantly, it is possible to represent repe-
titions of a feature by linking it to multiple tokens. In this
theoretical framework, location is treated as a feature along
with other features, such as color and orientation, and this
means that the model can represent multiple items occurring at
the same location by assigning each one to a distinct token.
Once encoded, the links can subsequently be used to recon-
struct which types are connected to a given token. Links
within the binding pool are maintained in memory as self-
sustained patterns of neural firing. Such activation-based

Fig. 2 In this illustration of the binding pool model, a diagonal purplish
line is being stored (shown at the bottom of the figure). The features of the
stimulus (color, location, and orientation) are separated into distinct
feature layers, which we refer to as types. The types are connected to
the binding pool, in which the type links are bound to an object repre-
sentation, referred to as a token. In this example, the stimulus is being
stored in token 1. However, if there were multiple stimuli, each would be
assigned to a different token. The number of tokens shown here should
not be construed as a capacity limit, since the model can encode more
than three tokens per trial
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representations can be created and erased rapidly through
excitation and inhibition of nodes.

Two kinds of capacity in the binding pool

The binding pool has distinct limitations on the quality and
number of encoded items. These two forms of capacity inter-
act in that, all else being equal, when more items are encoded
into memory, each item’s quality will be reduced.

The first such capacity limitation is related to the size of the
binding pool, which is assumed to be a fixed, immutable
property of the brain. The binding pool is a distributed form
of memory that has much in common with preexisting ideas
about mathematical abstractions of biological memory sys-
tems that are distributed (McClelland & Rumelhart, 1988;
Murdock, 1983) or holographic in nature (Kanerva, 1993;
Plate, 1995). In such models, a memory trace is not stored in
a single neuron but is distributed across a large number of
neurons. The more neurons that are available for a given
representation, the greater the precision of the resultant mem-
ory reconstruction will be. In this sense, the capacity of the
binding pool is not measured in terms of an absolute limit on
the number of links, since the number of such links that might
conceivably be represented is much larger than the number of
stimuli in an experiment. Rather the capacity limit is observed
in the way that memory for each individual item degrades as
the number of stored links increases. As such, while there is no
maximal limit to the number of links that can be created per se,
there is a point at which so many links are stored that the
amount of cross talk between them renders the memory rep-
resentations indistinguishable from random noise.

The second capacity limitation is the number of items
stored per trial, which is assumed to vary according to the
parameters of the task, as well as intrinsic variations in atten-
tional control from one moment to the next. The model stores
individual items by linking them to tokens, and in this sense,
tokens can be seen as analogous to slots. By fixing the number
of tokens at three, the model would resemble a traditional slot
model, with the added assumption that they share a binding
pool. However, in order to best fit the data, the model assumes
a variable number of items encoded per trial. In making this
assumption, the model adopts the findings of Sims et al.
(2012) and uses parameter fitting to characterize the distribu-
tion that describes this variability. We assume that the number
of tokens encoded per trial is drawn from a uniform distribu-
tion (see the Appendix for details) that may be affected by task
parameters, such as increased encoding duration, which seems
to increase the number of items encoded (Vogel, Woodman &
Luck, 2006) and to reduce the guessing rate (Bays et al.,
2009). Thus, the limit on the number of encoded items is not
fixed in the same way that the size of the binding pool is. A
further assumption of this encoding limitation is that items that
are not encoded have no influence on activity in the binding

pool. This is an important assumption because it means that
the ensemble effects we simulate below are the result of only
the items that are encoded. In this article, we use one distri-
bution of item-encoding limits for all of the simulations to
reduce the number of parameters, but we expect that distribu-
tion to vary according to the task.

Connectivity between the three components of the model

The type nodes are connected to the binding pool with excit-
atory connections that are pseudorandomly determined. These
connections are bidirectional such that a type node that excites
a given binding pool node during encoding will also receive
input from that same binding pool node during retrieval. Each
type node is connected to a proportion of the nodes within the
binding pool. These connections are pseudorandom for type
nodes representing continuous features, in the sense that two
neighboring type nodes in feature space (i.e., two shades of
red) will share a greater proportion of connections than nodes
that are farther away in type space. Tokens are connected to
the binding pool in a similar fashion, except that they do not
have a similarity gradient; their connectivity is fully random.

Encoding and retrieval of a single item

The model assumes that binding features together to form a
coherent representation of a remembered object is an active
process that creates a pattern of sustained activity within the
binding pool to store links between features and locations, as
indexed by tokens. We do not explicitly simulate the mecha-
nisms required to understand the structure of the task or to
interpret the visual cues on the visual display. Instead, we
assume that a control signal is generated from task instructions
and controls the flow of information within the model using
gating signals (Wyble et al., 2009, provide an example of such
a gating circuit). For example, during encoding, the activation
values for the type nodes are fixed, and the activity levels of
the binding pool nodes are modified to store information.
During retrieval, the binding pool activity is held fixed, and
the values of type nodes in one feature dimension is modified.

To encode a colored object at a specific location, the
following steps occur in order. First, the color hue is translated
into a pattern of activity across the set of type nodes corre-
sponding to color, while location is represented on a different
set of type nodes (see the Appendix for details). At the same
time, a token node is allocated, corresponding to this object.
Next, excitatory projections from each of these representations
(color, location, and token) converge at the binding pool using
the preestablished connectivity patterns (Fig. 3). These con-
verging projections activate the subset of the binding pool
nodes that receive input from all three of these representations.
Those activated binding pool nodes have their activity level
augmented, and this selective increase in activation stores the
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link between the features and the token. Once encoding is
complete, the activated type nodes are no longer necessary,
and the sensory system is free to process a different stimulus
while holding the encoded stimuli in memory (Bowman &
Wyble, 2007; Wyble et al., 2009).

Retrieval of information from the binding pool is assumed
to occur in response to a retrieval cue. The first step in retrieval
is to translate the retrieval cue into a pattern of activity across
the appropriate type layer. For example, in the case of retriev-
ing a color on the basis of its location, we first activate the
location type node corresponding to the location of the re-
trieval cue. Next, this type node sends a retrieval cue to all of
the binding pool nodes that are connected to it, triggering them
to project their output to the token layer in an attempt to
retrieve the token that was originally bound to that location.
On average, since these binding pool nodes were strongly
connected to that token during encoding, that same token will
be more strongly active after retrieval. This process will
reconstruct a noisy version of the token activity that was
present at the time that particular stimulus was encoded (see
Fig. 4).

Next, a decision process determines whether the token
retrieval was successful by comparing the most active token
to the next most active token. If the token retrieval was
successful (see the Appendix for details), that token is
projected back through the binding pool to retrieve the

associated color. If the most active token node is not suffi-
ciently different from the second most active token, the model
will guess by retrieving a random feature value. In order to
retrieve the probed feature, the model utilizes a similar proce-
dure as for retrieving a token (Fig. 5). The active token node
selectively activates a portion of the binding pool connected to
it, and these active binding pool nodes project their activity to
the type layer. The retrieved population vector of type nodes is
then converted back into a continuous variable by using each
type node as a vector in a Cartesian space. These vectors are
then added together, and the resultant vector provides both a
direction and a length (Fig. 6a; and see the Appendix). The
direction is taken as the retrieved color, and the length is
assumed to represent an internal metric of confidence in the
retrieved value (see below).

Here is a highly simplified example to illustrate the concept
of encoding and retrieval within the binding pool. For the sake
of simplicity, we are assuming only one type dimension instead
of two, although the same general process occurs in either case.
Imagine that there are two type nodes (red and green), six
binding pool nodes (a, b, c, d, e, and f) and two tokens (1 and 2).

Through hardwired connections, red is connected to nodes
a, c, d, e. Green is connected to nodes b, c, d, f. Token 1 is
connected to nodes a, b, c, d, and token 2 is connected to
nodes c, d, e, f. Encoding a link between red and token 1
would cause nodes a, c, d (i.e., the subset of nodes connected
to both of them) to increase their activation by 1.0. To retrieve
the type linked to token 1, those nodes that are connected to it
and are active (i.e., a, c, d) would project their activity back

Input

Input

Lo
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n

Encoding Active
Inactive

Binding 
Pool

Color

Tokens

Fig. 3 In this illustration of encoding, the model is storing an item with a
color and a location feature. The color and location are first translated into
type node representations. The white arrows indicate the magnitude of
activation during this conversion process (location, in this case, is cate-
gorical, so that the type node is either on or off). Then, these types provide
input into the binding pool along with input from the active token. The
binding pool nodes that receive convergent input from both types and the
token are activated (shown in dark blue). The black lines indicate active
connections at the time of encoding. The gray lines indicate connections
that exist, but are not active
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Binding 
Pool
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Fig. 4 In order to retrieve the probed feature from the cued feature, the
model first retrieves the associated token representation. A retrieval cue
activates a type node (in this case, corresponding to a location), which
projects to the binding pool. The convergent input from these binding
pool nodes reactivates nodes in the token layer, and, on average, the token
that had been originally bound to this location will receive the most
activity. The retrieved token is then used to retrieval the probed feature
(i.e., color; see Fig. 5)
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down to the red and green types. Red would receive 3.0
activation units, and green would receive 2.0 activation units.

Likewise the model could reconstruct which token was
associated with red by activating those nodes that are connect-
ed to red (again, a, c, d). These nodes would project their
activity up to the tokens so that token 1 would receive 3.0
activation units and token 2 would receive 2.0 activation units.

This simple example illustrates the underlying process of
encoding and retrieval within the model; however, the model
that we use has Ω=800 binding pool units, which provides a
representational capacity that matches the performance sub-
jects on the tasks we fit below.

Retrieval confidence

Because retrieval of a single memory trace occurs across a set
of type nodes, the variability of those type nodes provides an
inherent metric of the quality of the memory trace, and this can
be interpreted as a confidence measurement. This variability
can be quantified as the length of the resultant vector when the
average across the type nodes is taken to reconstruct a contin-
uous value (Fig. 6b). This confidence metric is highly corre-
lated with the true error in the reconstructed value and, thus,
can serve as a measure of confidence. This confidence metric
provides a secondary threshold that can be used during change
detection as described below.

Encoding and retrieval of multiple items

When multiple items are presented on the display, it is as-
sumed that the visual system assigns tokens to each discrete

stimulus. It is further assumed that during encoding, the visual
system samples information from different objects serially.5

Each sample produces one encoding, as described above, by
activating a token corresponding to the object and the type
nodes that represent the pairing of the location and a feature of

5 We assume that encoding of multiple stimuli could occur in parallel
when stimuli are presented rapidly in sequence (i.e., at 100-ms separation)
at the same location. This is the conclusion of earlier models that use the
binding pool (Bowman & Wyble, 2007; Wyble et al., 2009).
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Fig. 6 Illustration of the properties of the retrieved mean vector. a The
length of each arrow around the color wheel corresponds to the activation
level of a type node. The vectors are added together to produce a
composite vector that has a length and an angle. This figure illustrates
the deviation (Δθ) of the retrieved color from the color of the original
stimulus. This angle is interpreted as the retrieved feature value, and the
length of the vector (ε) is interpreted as retrieval confidence. b A
scatterplot of the relationship between the length and deviation for trials
of set size 4. Note that there is a cluster near zero deviation that corre-
sponds to a correct retrieval of a token and the corresponding feature.
There is also a more broadly distributed band of responses at a lower
confidence level, corresponding to trials on which the item that was a
token was retrieved but the corresponding color value had not been
encoded. Finally, at the very bottom of the scatterplot, the line of dots
indicates cases in which token retrieval failed entirely and the model
guessed randomly, with a confidence of 0. In this plot, deviation values,
which normally range from 0 to 180, have been normalized to the range
[0 1]

Color

Output

Retrieve Color

Binding 
Pool
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Fig. 5 The retrieved token, in conjunction with the location cue (Fig. 4), is
then used to retrieve the color feature bound to that token. The white arrows
indicate the magnitude of retrieved activity of the type layer in the form of a
population vector. The mean of the population vector corresponds to the
retrieved feature (see Fig. 6a and the Appendix for more detail)
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that object. The number of items sampled per trial varies,
reflecting presumed fluctuations in the attentional state of
the subject (Sims et al., 2012). Importantly, the tokens have
overlapping projections to the binding pool, which means that
they share binding pool nodes. As a consequence, storing a
link to a given token will affect links bound to other tokens,
and the size of this interference will grow as the number of
stored links increases. Therefore, the retrieved feature value of
any stimulus that is stored in the binding pool will be affected
by all of the other links stored in the binding pool. When
averaged across trials with randomly varying feature values,
the result is a distribution that has increasing variance as set
size increases (Fig. 7). Note that this increase in variance
is apparent only for a no-change condition, in which the
deviation is measured between the original stimulus and
the retrieved stimulus (Fig. 8). For a changed probe stim-
ulus, the new value is drawn randomly, and therefore, the
deviation between the probe and the retrieved value is
also uniformly random, no matter how precisely the orig-
inal item was stored.

Model simulations

Computational models are best used when they are fit against
existing data and then used to generate testable predictions
using the same parameters. We will classify three types of data
for this purpose.

1. Fitted data are those that themodel can simulate accurately
because we have parameterized the model to exhibit them.
These parameter values are then used to produce simula-
tions of the inherent properties and predictions.

2. Inherent properties are known properties of VWM that
the model exhibits as a natural consequence of its design.

3. Predictions are simulations generated by the model for
experiments that have not yet been run. Specifying these
predictions in advance of collecting the data ensures that
the predictions are genuinely de novo.

Fitted data

We fit the model against two data sets: change detection as
demonstrated by Keshvari et al. (2013) and continuous report
by Bays et al. (2009). To fit the data listed below, there are 11
parameters that are adjusted using a grid search that calculates
the mean squared error at each parameter combination. These
two data sets will be fit with one parameter set, and those
parameters will then be used to simulate the inherent proper-
ties and the predictions.

Change detection performance decreases as set size changes

In change detection tasks, an array of stimuli are shown to a
subject, removed for some time, and then replaced with a
second array that could contain one change that is to be
detected. In the model, this task can be simulated by retrieving
each of the items originally stored in the array and com-
paring them against their spatially corresponding elements
in the probe display. In addition to the color value, the
confidence score associated with each item is also re-
trieved. In order for the model to produce a “change”
response, the retrieved value must be sufficiently different
from the original color, and the confidence of the retrieval
must be sufficiently high.

Data from change detection experiments can be analyzed in
terms of both hits and false alarms, as well as by the propor-
tion of hits relative to the magnitude of a change along a
feature dimension, such as color. The hit and false alarm data
illustrates the loss of change discriminability as set size in-
creases (Fig. 9a). The analysis by changemagnitude illustrates
that change detection is easier for larger changes (Fig. 9b). In
the binding pool model, the latter effect is a natural outcome of
the loss of precision with increasingmemory load, because the
storage of more links within the binding pool reduces the
chance that a small change will be detectable as a result of
the reduced precision. Furthermore, as the number of items
increases, the chance that an item will be stored at all de-
creases, which reduces the chance of detecting a change of
even the largest magnitude.
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Fig. 7 Histograms of simulated, retrieved color value in degrees, cen-
tered at 0° relative to the color that was encoded, taken from the retrieved
population mean. This and each further simulation (unless otherwise
noted) were collected over 10,000 trials. From the top to the bottom,
the histograms indicate set sizes of 1, 2, 4, and 6
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Memory precision decreases as set size changes

As the number of elements stored in memory increases, the
ability to accurately report a specific feature value of the items
in a continuous report task decreases. For example, if shown a

patch containing a particular color, subjects can be asked to
indicate the specific hue of that patch on a color wheel. These
responses can be scored as errors relative to the true color,
resulting in a histogram of errors across trials (Wilken & Ma,
2004). W. Zhang and Luck (2008) further proposed that such
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Fig. 8 Scatterplots showing the
relationship between the length of
a retrieved vector (i.e.,
confidence) and the deviation
between the retrieved color and
the actual color at each location in
the probe display. a The left
scatterplot indicates the response
for an unchanged item in the
probe display, while the right plot
indicates the response for a
changed item. The deviations are
uniformly distributed for the
changed item because the
changed feature value was
selected from a uniform
distribution. The thresholds for
deviation and length are indicated
as lines, and green dots indicate
correct responses (CR = correct
rejection, FA = false alarm). This
example is for set size 4. b
Scatterplots for set sizes 2, 4, 6,
and 8. Note that as set size
increases, the confidence
decreases, and the deviation
increases. Also, the thresholds
change systematically as a
function of set size according to
the parameters (see the Appendix
for details)
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responses could be divided into correct retrievals and random
guesses through the use of a mixture model, producing separate
estimates of the percentage of correctly reported items and the
precision of those responses. Bays et al. (2009) extended this idea
further by dividing responses into three groups: correct retrievals,
swaps (i.e., cases of retrieving the wrong item on the basis of a
cue), and random guesses. The overall pattern from such data is
that as set size increases, the precision of correctly retrieved items
decreases, while the proportion of swaps and guesses increases.

The responses of the model can likewise be divided with a
mixture model into the same three response types (see the

Appendix for details). For the purpose of fitting the data, we use
data from Bays et al. (2009), Experiment 1, in the condition for
which the stimuli were presented for 100 ms. In the simulated
results the standard deviation of the error distribution of correctly
retrieved items increase as a function of set size (Fig. 10).
Furthermore, because of the cross talk between stored representa-
tions, each stored representation pulls other representations toward
itself. This attraction causes some retrievals to be classified as swap
errors by the mixture model. For a larger set size, this attraction is
increased, increasing the likelihood that an item will be classified
as a swap. Finally, guessing occurswhen a stimulus is not encoded
at all, due to the trial-by-trial variability in the number of encoded
items.6 As set size increases, it is more likely that a stimulus will
not be encoded and the model will guess.

Inherent properties

The model exhibits behaviors that match findings already in
the literature. These are data that were not used explicitly
when fitting the parameters but are, nevertheless, observed
as inherent properties of the model.

Retrieval based on nonlocation cues

Retrieval can occur without using the location of the object as
a cue. For example, if several oriented, colored bars are
presented for encoding, subjects can retrieve the orientation
of a particular bar given a color cue, even when that bar is
presented at the center of the screen (Bays, Gorgoraptis et al.,
2011; Gorgoraptis et al., 2011; van Lamsweerde & Beck,
2012). This capability illustrates that VWM is content-
addressable, which means that an item representation has
some chance of being retrieved by any of its features. This
property is inherent in the design of the binding pool model in
that multiple types can be linked to a single token and retrieval
of that token can be triggered from any of the type layers.

6 Another source of guessing errors could be a decay of information
within the binding pool, but the loss of information is currently outside
of the scope of the model.
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Fig. 10 Continuous report simulation. The model simulations were fitted
to data from Bays et al. (2009), in the condition with a stimulus presen-
tation of 100 ms. Across 20 simulated subjects, the largest standard error
value was .33 for standard deviation and .001 for swaps and guesses
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Fig. 9 Change detection simulations. a Proportion of hits versus false alarms
of the binding pool model compared with data from Keshvari et al. (2013).
The RMSE value is the average RMSE of the hit and false alarm rate. In this
figure, the largest standard error for simulations is .0071 computed as the
averaged output of 15 simulation batches, each of which ran 750 trials. b
Proportion of reporting a “change” given the difference in degrees between an
item in the memory array and the probe display. The actual datapoints from
Keshvari et al. are represented as dots. The largest standard error value for any
simulated data point is .0268 (error bars omitted for clarity)
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Featural cross talk

When presented with two stimuli along the same dimen-
sion, such as spatial frequency, the retrieved values of
those stimuli will shift their representations toward each
other (Huang & Sekuler, 2010). The binding pool model
exhibits a similar distortion when multiple items are
encoded, and this is a natural consequence of the fact
that there is overlap between token connections (Fig. 11).
If two items are stored, some of the binding pool nodes
linked to each token will be shared with the other token
bound in that trial. Therefore, when retrieving item 1,
item 2 will also be partially retrieved, and this will affect
the retrieved vector representation. Furthermore, this ef-
fect is increased in magnitude when the stimuli are
farther apart from one another in feature space.

Retrieval precision is improved when variability is decreased

When the variability of one feature in a set of presented items
is decreased (e.g., the colors are chosen from a more restricted
region of color space), the ability to detect changes in that
feature is improved (Lin & Luck, 2009; Sims et al., 2012).
Sims et al. considered this as evidence that memory encoding
can be represented using an information-theoretic framework
in which a predefined number of bits of information are
allocated across a number of items. Improved performance
in the homogeneous feature condition results from the alloca-
tion of those bits across a smaller range of feature values. The
binding pool model exhibits the same quality, although it does
not use an explicit information-theoretic framework. Instead,
this effect emerges because the precision of a retrieved value is
improved when all other values of that feature reside in nearby
locations in feature space. This is due, in part, to the featural

cross talk, which changes as a function of the difference
between two stored feature values within a single feature
dimension. To illustrate this point, a simulation of the condi-
tion described in Sims et al. is shown in Fig. 12.

Binding errors

Binding features to locations creates the possibility for bind-
ing errors—situations in which a remembered feature is erro-
neously linked to the wrong object or location. Such errors
represent failures to correctly maintain the index between
features and locations and can be observed in the data of
Wheeler and Treisman (2002), in which subjects were im-
paired at spotting a change if it involved a location swap
between two items on the screen, rather than replacing those
two colors with different colors. The model produces this
same pattern in a simulation of these two conditions. This
pattern occurs because a retrieved value will be biased toward
the locations of other stored values. Therefore, when the probe
display replaces a given object’s color with a another stored
object’s color, there is a decreased chance that the change will
be noticed, relative to a condition in which that item in the
probe display was changed to a feature value that is not
currently stored in memory. Thus, the chance of detecting a
change is slightly reduced in the location swap condition,
relative to the condition in which the colors are replaced with
new ones. Because the Wheeler and Treisman paradigm is
different from the Keshvari et al. (2013) paradigm that was
used for data fitting, in that subjects expect two items to be
changed in the former case, new thresholds for change detec-
tion are required. Therefore, to demonstrate that the binding
effect is robust, rather than a consequence of parameter fitting,
the presence of binding errors was confirmed statistically over
a range of parameters using a grid-based search of the four
change detection threshold parameters (see the Appendix) that
compared the proportion of hits between novel-color and
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Fig. 11 A simulation of the interference effect originally demonstrated
by Huang and Sekuler (2010). Two items are stored in the binding pool,
with the first item being fixed at 180° on a continuous scale and the
second item presented at various distances (0 to 90 in increments of 18°)
relative to it on the feature dimension
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Fig. 12 In a simulation of the effect found by Sims et al. (2012), the
model is more precise in being able to spot a changed stimulus value
when the items it has encoded are more similar to one another in the
retrieved feature dimension
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color-swap conditions. With a sampling of 4000 different
combinations of threshold parameters, performance in the
new-color condition was higher than performance in the
color-swap for both set size 3 (sign test: p < .0001) and set size
6 (sign test: p < .0001).

The effect of confidence on continuous report

Subjects in VWM tasks have an inherent sense of the quality
of their memory, and they can use this knowledge to accurate-
ly choose items that have higher precision (Fougnie, Suchow
& Alvarez, 2012). Retrieval confidence can also be reported
explicitly by subjects. In an experiment by Rademaker et al.
(2012), items reported with high confidence had increased
precision and dramatically decreased proportions of guessing
and swap errors, relative to low-confident items.

The output of the model can be subjected to a similar
analysis by binning responses into quantiles according
to confidence (see the Appendix for details). This anal-
ysis produces results that are in good qualitative agree-
ment with those of Rademaker et al. (2012). First, the
model simulates an increased proportion of highly con-
fident responses for smaller set sizes (Table 1). Second,
the model simulates that precision decreases with de-
creased confidence and that swaps are relatively rare in
the highest confidence bin (Fig. 13). This last point is
especially important because it is not certain to what
degree the swap errors as found by a mixture model
analysis are genuine cases in which the subject reports
the incorrect item. In partial answer to this question, the
simulations are in agreement with the data that these
swap results are primarily from retrieval noise, rather
than highly confident errors. Indeed, the model simu-
lates that subjects’ awareness of the accuracy of their
responses is actually quite good and that their highly
confident responses will almost always be centered at
the correct location in feature space at the time of
retrieval for the kind of tasks simulated here.
However, as we describe below, the model does predict
that highly confident swap errors should be observed in
certain experimental contexts.

Predictions

To test the explanatory limits of the model and to generate new
insights into the mechanisms underlying retrieval, we list a
series of testable predictions concerning the interaction of
similarity, repetitions, and confidence in continuous report
tasks.

Prediction 1: Loss of precision due to set size is a product
of interference with other stored items

Simulations of memory precision for items have found strong
support for variable precision encoding, in which the stored
representations vary in their precision from trial to trial as a
function of set size, among other influences (Fougnie et al.,
2012; van den Berg et al., 2012). In the binding pool model,
there is an inherent loss of precision as more items are stored,
but this loss of precision is not due to variations in precision at
the time of encoding. Rather, the loss is primarily due to the
interference between stored binding links that is expressed at
retrieval. Consequently, the model predicts that if subjects can
be successfully instructed to forget one or more items in a
memory set, the precision of the remaining items would
increase to nearly the levels they would have had if the now
forgotten items had not been encoded in the first place.7

Forgetting is accomplished in the model by resetting the
binding pool nodes connected to a to-be-forgotten token back
to an activation of 0. In simulations of 11 pseudosubjects with
5,000 trials each, retrieving one of two stored colors produced
standard deviations of 14.95 (SE of 0.09). Eliminating the
memory trace of one of those items allowed the nonforgotten

Table 1 Relative proportions of responses for set size given low, medi-
um, and high confidence

Confidence Set Size 1 Set Size 2 Set Size 4 Set Size 6

Low 0 .03 .51 .72

Medium .01 .62 .45 .25

High .99 .35 .04 .03

Note. This simulation and that shown in Fig. 13 were simulated with
30,000 trials. Note that the proportion of high-confident responses drops
dramatically with set size.

7 Williams, Hong, Kang, Carlisle & Woodman (2013) demonstrated an
intentional forgetting effect very similar to this prediction in a directed
forgetting paradigm. In their task, participants stored 2 color patches, and
were then asked to forget one, which improved performance on the
remaining patch, although not to the same level as if the forgotten item
had not been stored, as predicted here. We learned of Williams et al.
(2013) after this paper had been submitted for publication, so we retain
this simulation as a prediction rather than an inherent property.
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Fig. 13 A simulation of a continuous report task with responses divided
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the retrieved vector into tertiles. As was found by Rademaker et al.
(2012), high confident responses are rarely swaps or guesses. In this
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item to be retrieved with a standard deviation of 12.1 (SE of
0.13). Storing just a single item resulted in a standard devia-
tion of 10.26 (SE of 0.13). Note that storing two items and
dropping one would never produce the same standard devia-
tion as storing just one item, because of the overlap between
tokens in their connections to the binding pool. Thus, the
model also predicts that it is impossible to completely erase
a single itemwhile leaving others intact; there will always be a
small amount of residual interference remaining from the
erased item.

Prediction 2: Memory precision is reduced when storing more
complex objects

The size of the binding pool provides a fundamental limit on
the amount of information that can be stored in memory
regardless of whether that information is grouped within an
object or distributed across objects. Therefore, adding new
feature dimensions to the stimuli in a VWM task produces
stronger constraints on which binding pool neurons can be
used to store information about that object. Consequently,
storing information about stimuli with more features will
produce a loss of precision about each of the stored features,
relative to simpler objects, especially if the subject does not
know in advance which features will be tested. The empirical
data pertaining to this prediction are complex and somewhat
contradictory. Luck and Vogel (1997) found that memory for
complex items (defined as objects with multiple features, such
as color and orientation) were no worse than memory for
single-feature objects. On the other hand, more recent studies
by Fougnie et al. (2012) and Oberauer and Eichenberger
(2013) have found evidence that adding extra features to an
object reduced precision and change detection accuracy,
respectively.

The binding pool model suggests that a likely reason for
this discrepancy is the amount of information stored per
feature dimension. In the model, the specificity of a stored
representation within a feature dimension can be modulated
by adjusting the sparsity of a representation within a type
layer. A sparser type representation allows a more specific
feature value to be encoded, but it also reduces the number of
binding pool nodes that can contribute to the retrieval preci-
sion of information about that object across all other feature
dimensions. To see why, consider that only binding pool units
that are connected to an active type node are able to participate
in encoding information about an object. Therefore, there is a
predicted trade-off between encoding precision within a single
dimension and precision across all other dimensions.

This explanation suggests a specific reason why Luck and
Vogel (1997) failed to find an effect of object complexity,
which is that the subjects encoded some features, such as
shape and texture at a coarse-grained level, even for the simple
objects. For example, even when subjects are not expected to

report on the shape of a colored square, there is likely to be
some shape information that is stored automatically. Thus,
subjects may have been able to perform adequately in a
change detection paradigm without sacrificing performance
when there are very few possible values that a feature might
have by relying on this coarse-grained representation.
However, if subjects are required to retrieve a more specific
feature value to perform a memory task (e.g., one of eight
possible values vs. one of four possible values), the model
predicts that this requirement will reduce the quality of the
stored value for all other feature dimensions. In support of this
explanation, both Fougnie et al. (2012) and Oberauer and
Eichenberger (2013) placed greater demands on the specificity
of retrieved representations than did Luck and Vogel (1997).

Prediction 3: The effect of similarity and repetition
on continuous report

The binding pool model encodes similarity within the type
dimension and, therefore, can make predictions about the effect
of similarity on performance in continuous report tasks. In fact,
the model can simulate a gradient of similarity up to and
including complete overlap (i.e., repetitions). In this prediction,
the similarity between colors in a memory array of size 4 is
adjusted so that items occur at regular intervals in the color
wheel from 0° separation (i.e., four copies of the same color) up
to 90°. As a baseline comparison, the retrieved distribution of
values is compared with encoding of a single color.

The simulations reveal two predictions. First, as the set of
colors becomes more similar, the retrieved color becomes more
precise (Fig. 14). Second, repeating the same color 4 times at
encoding produces precisions that are substantially more vari-
able than encoding a single copy of that color. The increased
variability of encoding four copies of the same color is due to the
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Fig. 14 A simulation of response precision as a function of the similarity
of stored stimuli. The set size is held constant at four, and the stimuli are
distributed in feature space at fixed intervals from 0° to 90°. As a baseline
comparison, the green line represents response precision when only a
single item is encoded. Note that the precision of a repeated item is worse
than the precision of one encoded item, and this is due to the probability
of encoding failure in the repeated item case
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trial-to-trial variability in the number of colors encoded, which
causes the model to fail to encode some of the colors on some
trials, and such encoding failures produce random guessing.

A failure to confirm this prediction (i.e., finding that four
repeated colors have the same precision as encoding a single
color, or perhaps an even higher precision) would highlight
the importance of particular kinds of ensemble representations
that are not included in the current model. For example, it may
be the case that a repetition is treated like a feature value, such
that a repeated color is encoded by creating a single token that
is bound to the repeated color, the repetition feature, and a
number of different locations. An analogy to this theory can be
found in the language production literature, in which it is
thought that double-letter is a feature that can be bound to
the wrong letter, such that the word “tomorrow” is frequently
misspelled as “tommorow” (Caramazza & Miceli, 1990).

Prediction 4: The influence of similarity on confidence

The binding pool model also predicts that since retrieval
confidence is determined by the variability of the retrieved
type layer, similarity should increase confidence.
Furthermore, four repeated copies of the same item should
lead to less confidence in report than a single item (Fig. 15). A
failure to confirm this prediction would again point to the
existence of mechanisms for explicitly encoding repetitions.

Prediction 5: The effect of repetitions and similarity on report
of other items

The binding pool model represents the interference between
items that are stored producing both general decrements in
precision (Wilken &Ma, 2004) and attraction of one retrieved
representation toward another (Huang & Sekuler, 2010).
Consequently, the binding pool model is able to make

predictions about how the relative proximity of two items to
one another will affect a third item.

This prediction will also make use of the model’s ability to
represent and encode repetitions. In this prediction, three
stimuli (referred to as A, B, and C) with feature values on a
linear dimension, such as spatial frequency, will be encoded.
The dependent value will be the retrieval of C, while the
proximity of A and B is varied. At one extreme, A and B
are relatively far apart from one another, while at the other,
they are completely overlapping (Fig. 16). However, in all
cases, the mean of A and B remains the same.

The model makes two predictions about this paradigm.
First, as A and B become more proximal, the magnetic effect
they produce on stimulus C increases, even though the mean
of A and B remains constant. Second, there is no discontinuity
in this function as A and B become repetitions. Thus, the
model effectively predicts a null effect of repetitions on a third
stimulus. As in predictions 4 and 5, finding a qualitatively
different result when A and B are repetitions would suggest
that repetitions are encoded explicitly.

0
15
30
60
90

Set size 1

Separation

Fig. 15 Histograms of length values (i.e., simulated confidence) pooled over
multiple trials for various sets of item similarity with set size 4.The colored
lines represent the same degrees of item separation as in Fig. 14. Note that the
model predicts that confidence will be much greater for a single item than for
four items, regardless of whether they are similar or repeated
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Fig. 16 Illustration of the experimental paradigm for prediction 5. a A,
B, and C represent stimulus features for three encoded objects on a
continuous dimension such as spatial frequency. The proximity of A
and B in feature space are varied up to and including the case where the
two stimuli are identical (i.e., #4). The effect of their interference is
measured on stimulus C. b The predicted magnet effect on C is depicted.
Numbers 1 through 4 indicate which data points in (b) correspond to
scenarios depicted in (a)
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Prediction 6: Highly confident swap errors are possible

In the specific experimental paradigms being simulated here,
the binding pool simulations suggest that swap errors occur
primarily when confidence is medium or low, and this result
agrees with data from Rademaker et al. (2012). These low-
confident swap errors occur when the correct token is retrieved
by a location cue but the retrieval of the color associated with
that token is strongly pulled toward another stored feature
value. This conflict between multiple representations adds var-
iability to the type layer, which reduces the confidencemeasure.

However, the model predicts that, in certain circumstances, it
should be possible for subjects to make swap errors with high
levels of confidence due to the retrieval of the wrong token. Thus,
when the second step of the retrieval process commences, this
incorrect token is used to retrieve the feature associated with it,
and the model might confidently generate the wrong feature.
Such errors would occur in situations when two stimuli are very
proximal in the feature dimension that is used to cue retrieval of
the stimulus. For example, in the Rademaker et al. (2012) exper-
iment, if stimuli were presented sequentially to avoid configural
effects and were presented at closer locations, a significant pro-
portion of highly confident swaps should be observed.

General discussion

The binding pool model provides a constructive proof that it is
possible to create, using simple neural elements, a hybrid
model of VWM with a resource pool indexed by tokens that
exhibits behaviors that are characteristic of human subjects in
a variety of tasks. Tokens, which resemble the classical notion
of slots, are bound to features and play an essential part in
storing and retrieving information. This model represents a
significant advance over previous neural models of VWM in
its ability to explain data from both change detection and
continuous report tasks using a single set of parameters.

As the size of a simulated memory set increases, the binding
pool model exhibits a quantitative match to the patterns of
interference observed in human behavior. In the model, this
relationship between set size and performance results from two
distinct limitations within the model. First, we simulate a trial-
to-trial variability in the amount of items that are encoded on a
given trial, as a function of the short encoding duration used in
many VWM tasks. Thus, as set size increases, there is an
increasingly large chance that any randomly selected item will
have not been encoded, which increases the proportion of
guesses in a continuous report task and the proportion of misses
in a change detection task. The second limitation is the inter-
ference between links stored within the binding pool: As the
number of stored links increases, so does the interference. This
interference also manifests directly as the within-trial “magnet”
effect observed by Huang and Sekuler (2010). This interference

also produces a decrease in precision and an increase in swap
errors with set size in continuous report tasks. In change detec-
tion tasks, this interference produces a reduced ability to cor-
rectly discriminate between change and no-change trials, as
well as a flatter curve of change detection probability as a
function of the magnitude of a change (Keshvari et al., 2013).

The binding pool model also provides an inherent measure of
confidence about the quality of retrieved representations by mea-
suring the variability of type node activity after retrieval. The
greater the variability is (i.e., the more type nodes are co-active),
the lower the confidence is. This derived sense of confidence is
suggested to play a role in determining whether an item has
changed in a change detection task. This simulated measure of
confidence is able to accurately predict whether a given response
is likely to be accurate, in terms of both precision and the likeli-
hood of guesses or swap errors. This property of the model stands
in agreementwith recent data that compared subjective confidence
ratings with objective accuracy (Rademaker et al., 2012).

Two sources of retrieval errors

Another contribution of the binding pool model is to charac-
terize the multiple forms of errors that may arise in the
retrieval process. One source of error is a failure to retrieve
the correct token, which gives rise to highly confident swap
errors. Another error is that of a noisy retrieval process given
that the correct token was retrieved. These two types of errors
are predicted to occur at different rates depending on the
confusability of the cue that elicits retrieval. Furthermore,
the model predicts that confidence measurements may be a
clear way to discriminate between these two types of errors.

Another likely source of error, which is not addressed in the
model, is decay of active memory traces (Fougnie et al., 2012).
Such decay could be incorporated either by having active
binding pool nodes lose their attractor states spontaneously or
by allowing activation values of binding pool nodes to drift over
time. Either implementation would cause a gradual erosion of
precision with a time constant dependent on the rate of change.

Wholistic encoding

Treisman and Schmidt (1982) computed the probability that
multiple features from the same object would be stored to-
gether, and they found evidence of independence, which is to
say that correct retrieval of one feature of an object made it no
more likely that another feature of that same object would be
reported as belonging to it. Subsequent explorations of the
same question have found the same answer (Bays, Wu &
Husain, 2011b; Vul & Rich, 2010). The binding pool model
does not inherently predict either dependence or independence
between co-occurring features, since this is a property of how
the objects and their features are selected for encoding. Using
the architecture described above, independence between
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features could be simulated by assuming that multiple features
from an object are sampled independently as feature/location/
token triplets. Thus, an oriented colored bar would be encoded
by linking its orientation/location pairing to a token and then
linking color/location to the same token. A random sampling
process across all possible pairings of feature and location for
all objects in a display would provide the observed indepen-
dence between stored feature values. In the simulations pre-
sented here, this issue is not directly relevant, since we are
simulating tasks in which there is only one explicit feature/
location pair per object. Thus, this is an issue left for future
work. However the model does make a clear prediction that
the more features that are encoded per object, the lower the
precision will be. This prediction can be surprisingly difficult
to test, because it is not straightforward to deduce what all of
the features of an object are. For example, when a square color
patch is encoded, even when subjects are not asked to report
the shape explicitly, some amount of shape information is
probably encoded to at least a coarse degree. Surprise memory
tests may be one means to address such questions about what
information is incidentally encoded beyond what is explicitly
required by the task (e.g. Rock, Linnet, Grant & Mack 1992).

Comparison with other models

There are numerous accounts of VWMandWMat varying levels
of mechanistic specificity. While it is beyond the scope of this
article to review this body of work exhaustively, there are several
comparisons that are particularly revealing in terms of clarifying
theoretical positions on the underlying structure of VWM.

Some models characterize VWM performance by fitting
distributions that describe the precision of stored items, rather
than fixing the precision at a specific value (Fougnie et al., 2012;
Keshvari et al., 2013; Sims et al., 2012; van den Berg et al.,
2012). The model by Sims et al. suggests that there is variability
in the number of encoded items from one trial to the next. On
this point, our models agree, because we find that in fitting the
data from Bays et al. (2009), it is essential to include substantial
variability in the number of encoded items from trial to trial to
account for the pattern of guesses as a function of set size. Sims
et al. also found that an information-theoretic encoding scheme
is necessary to account for the changes in retrieval precision
when the variability of the encoded items is varied. Our model
demonstrates this behavior as well, even without an explicit
information-theoretic allocation of bits. In the binding pool
model, this interaction between featural similarity and retrieval
precision is a natural consequence of the mutual interference
between stored pieces of information: Items that are more dif-
ferent from one another produce stronger interference as mea-
sured by the paradigm described by Huang and Sekuler (2010).

Another set of statistical VWM models find superior
matches with observed data when the precision distributions
are allowed to vary as a function of set size (Keshvari et al.,

2013; van den Berg et al., 2012). Such models behave in a
similar manner as a hybrid resource/slot account, such as this
one, in the sense that there is a specific number of items that are
encoded, which may be less than the number of items on the
display, and the precision of encoding is stronger when fewer
items are encoded. In the binding pool model, such variability is
inherent in the memory storage mechanism because multiple
pieces of information share the binding pool and mutually
interfere with one another at the time of retrieval. The more
items that are stored on a given trial, the lower the precision will
be for all of them. Furthermore, in the binding pool model, the
retrieved precision varies both between trials as a function of set
size and between items within a trial. This variability arises
from three sources. First, there is trial-to-trial variability in the
number of items encoded. Second, there is variability in the
random initialization of connections between different layers of
the model that affects the degree of interference between stored
representations (e.g., if two tokens happen to share a greater
fraction of the binding pool, they will exhibit greater interfer-
ence). This form of variability is expected to occur only be-
tween subjects. The third source of variance arises from the
specific combinations of stimulus values that are randomly
chosen, because the amount of interference between two or
more items is a product of their similarity in feature space. This
form of variability would occur between subjects and would
reflect their varying levels of familiarity with the stimulus
dimension(s) being tested. Thus, the binding pool model is in
agreement with accounts of variable precision and provides a
mechanistic explanation as to how some of that variability
might arise.

Another class of models has been using a similar method of
fitting distributions to understand the structure of memory
encoding in terms of ensembles of features. In the binding
pool model, features of an object are represented at the sim-
plest possible level: We use a separate population code for
each feature of each object. In contrast to these simple repre-
sentations, Brady and Alvarez (2011) and Brady and
Tenenbuam (2013) proposed that representations are hierar-
chical in the sense that some representations correspond to
individual object features and other representations corre-
spond to groups of object features. For example, if groups of
red and blue circles of varying sizes are stored in memory,
there are memory traces for the individual circles, but also
superordinate representations of the average sizes of the two
groups of circles. Orhan and Jacobs (2013) argued that VWM
attempts to discover the underlying structure of the items
being stored and represents information as clusters of possible
groups of items along with the probabilities of these clusters
being accurate representations.

The binding pool model has no explicit representations of
higher order ensembles, although it can, nevertheless, explain
some of the data typically associated with ensembles. In this
article, we simulate the within-trial magnet effect described by
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Huang and Sekuler (2010) as an inherent property of a model
in which multiple items are stored within a shared pool of
neural resources. Such interference arises despite the fact that
the items are represented as independent features at the time of
encoding. Thus, the model clarifies that some ensemble ef-
fects can be accounted for by a model in which neural re-
sources are shared between items. However, the binding pool
model currently has no ability to accommodate some of the
higher order ensemble effects involving complex configura-
tions of items (e.g., Jiang et al., 2000). Looking forward,
incorporating feature representations that use hierarchical en-
sembles (Brady & Alvarez, 2011), probabilistic clusters
(Orhan & Jacobs, 2013), or two-dimensional templates
(Brady & Tenenbuam, 2013) into the binding pool model
has the potential to build neurally plausible ensemble models
of VWM.

In addition to models of the statistical properties of VWM
representations, there are other models that focus on possible
neurophysiological mechanisms of information storage. One
such account (Wei, Wang & Wang, 2012) proposes that each
item in memory is stored as a distinct bump-attractor (cf. K.
Zhang, 1996) and multiple such attractors can coexist within a
feature domain. This model explains the limits of VWM as a
function of attractors that inadvertently combine together
when memory is overloaded. This model provides an elegant
explanation of VWM capacity as an emergent property of
neural dynamics in a feature layer (similar to our type layer).
A similar idea, recently proposed by Franconeri, Alvarez and
Cavanagh (2013), describes memory capacity limits in terms
of cortical maps. Selection of objects within those maps
requires the inhibition of surrounding areas. Therefore, there
is a natural limit on the number of items that can be encoded as
a function of the size of these maps, because the inhibited
surrounds of multiple items collide as the system becomes
overloaded.

With respect to the terminology we use here, both of these
models store information at the type level. That is to say, they
use a localized, sparse, nonoverlapping representation in
which there is a one-to-one correspondence between clusters
of activated neurons and the items being stored. The binding
pool model, in contrast, has distinct neural structures for
maintaining information (e.g., the binding pool) and for
representing features in a form that is accessible to other brain
regions (e.g., the type layers). When other brain areas need to
access information stored in the binding pool, it must be
transferred back to the type layer first (see also Oberauer,
2009, for a similar account).

We suggest that this distinction between storage and repre-
sentation is crucial because these other accounts (Franconeri
et al., 2013; Wei et al., 2012) would have difficulty exhibiting
some of the key properties of workingmemory that we discuss
above. For example, such models have no ability to store
repetitions because, as two items grow more similar, it would

be predicted that one of the items would disappear from
memory or the two would merge into a single representation
that loses any information about the existence of two discrete
items. Contrary to this prediction, data show that increasing
similarity between stored items actually improves memory
performance (Sims et al., 2012). Furthermore, while the model
of Wei et al. provides a straightforward account of storing
multiple single-feature items, without a binding mechanism, it
lacks the ability to store conjunctions between features and
other features or features and locations.

The role of tokens in cognitive function

In the binding pool model, tokens provide a form of indexing
that can store representations of complex objects, not unlike
the idea of object files (Treisman & Gelade, 1980). We spec-
ulate further that these tokens fulfill a crucial role in allowing
higher order cognitive functions to make use of the represen-
tations stored in VWM. Assuming that such higher order
functions might include, for example, the ability to compare
stored representations against one another or to recombine
elements of stored representations into higher order represen-
tations, it would seem important that these higher order func-
tions can easily access stored information regardless of the
specific features. The binding pool provides an answer to this
functional requirement in that the ability to bind tokens to
arbitrary features means that tokens serve as pointers to col-
lections of features. Superordinate levels of cognition could
operate on the tokens themselves and, thereby, have indirect
access to the types that are bound to the tokens. This level of
abstraction allows a level of computational flexibility that
begins to resemble symbolic forms of processing. We suggest
that this capability is crucial for bridging the gap between
visual pattern information and higher order forms of
cognition.

Conclusion

The binding pool model that we describe here provides one
potential theory about how working memory resources are
distributed across multiple items. The model suggests that a
hybrid resource model is computationally feasible, given sim-
ple neural mechanisms. Moreover, the model specifies a num-
ber of issues that any comprehensive model of VWM would
have to address, including such capabilities as repetition
encoding and content addressable memory. The contribution
of the model to the debates regarding slots, resources, and
ensembles is to provide clarity, in the form of a formally
specified implementation of a hybrid slot-resource theory.
This implementation can generate predictions that will drive
further empirical inquiry in pursuit of a more finely specified
and more strongly constrained theory of VWM.
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Appendix

This section provides a formal description of the model.

Neuronal dynamics

All simulated neurons are rate-coded and time steps are
discrete, such that neurons update their activation levels
in a single step at encoding and retrieval phases, as
specified below. Trials are completely independent of
one another.

Here is the pseudocode for storing and retrieving informa-
tion in a single trial:

1. Set up connections/determine encoding capacity
2. For each stimulus to be encoded

a. Stimulus selection
b. Convert feature values to type representations
c. Activate token
d. Increment activation of binding pool neurons receiv-

ing input from both types and token

3. To retrieve a stimulus
a. Convert cue feature value to type representation
b. Retrieve token
i. If token retrieval is successful, retrieve associated

type representation
ii. Otherwise, guess by randomly selecting a retrieved

feature value.
c. Retrieve type representation
d. Convert retrieved type representation to probed

feature value

4. For a change detection task
a. For each stimulus in the probe display, compare re-

trieved feature value to probe feature value
i. If confidence and deviation thresholds are exceeded,

then the model reports a change for this stimulus
b. If at least one change was detected, then the model

classifies this trial as a change trial
c. Categorize this trial as a hit, miss, false alarm, or

correct rejection.

5. For a continuous report task
a. The set of retrieved feature values from a group of

trials is passed through a mixture model (Bays et al.,
2009).

1. Set up connections/determine encoding capacity for a
trial

Each token and type node is connected to the binding
pool by selecting a proportion (α = .45) of the total set of
binding pool nodes at random. There are no restrictions
on the number of types and tokens that can be linked to
the same binding pool node. Connections have a weight
of 1.0. In tasks with a continuous report dimension, the
type connectivity is structured to provide a similarity
gradient by incorporating structured overlap between type
nodes that represent proximal feature values. For exam-
ple, type nodes 1 and 2 should have more overlapping
connections than type nodes 1 and 3. To do this, we
increased the proportion of overlapping connections be-
tween any two type nodes by ϑdistance, with distance as the
separation between two type nodes. Therefore, with ϑ =
.3, type nodes 1 and 2 will share an extra 30 % of their
connections, and type nodes 1 and 3 will share an extra
9 % of their connections, and so on.

For the experiments simulated here, we assume that the
limited encoding duration constrains the number of items that
can be encoded from the display and that this varies from trial
to trial. The number of items that are encoded on a trial is
drawn from a uniform distribution over the range specified by
parameters ψ and ω, equal to 2 and 7, respectively. Note that
this limit reflects limited encoding time rather than the capacity
of memory.

2. Encoding

2a. Stimulus selection

At the start of each trial, a set of stimuli is drawn from a
uniform distribution [1 360] with replacement. The range
represents the possible feature values for the stimuli. This
distribution is modified for the similarity and magnet effect
simulations as described below.

2b. Convert feature values to type representations

These feature values are converted to type node representa-
tions. In a continuous feature dimension, each type node
corresponds to a range of 36°, since there are 360° and 10
type nodes (specified as the parameter ρ). The two type nodes
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with values closest to the chosen stimulus value are selected,
one with a value below and one with a value above the
stimulus value as shown below:

typefloor Stimulus
36ð Þ ¼ 1 −

Stimulus

36
− floor

Stimulus

36

� �� �
ð1Þ

typeceil Stimulus
36ð Þ ¼

Stimulus

36
− floor

Stimulus

36

� �� �
ð2Þ

where floor and ceil correspond to rounding down and
rounding up, respectively. Stimulus refers to a feature
value in the range (1 to 360). If the type node selection
is 0, then that type node is set to 10 instead. If the
stimulus value falls exactly on the value of a given type
node (i.e., 36, 72, etc.), then only one type node is active
with a value of 1.0. In the case of feature dimensions with
discrete values instead of continuous values, such as
widely separated locations used in these simulations, the
model assigns one value per type node with activation
values of 1.0.

2c. Activate token

Each stimulus is assumed to be represented by a distinct token,
and its activity level is set to 1.0.

2d. Increment activation of binding pool neurons

Once the type and token activities have been determined, the
binding pool activity is adjusted according to the following
formula for each binding pool node Bβ:

Bβ ¼ Bβ þ ZtN t;β

X
f¼1

n

X f L f ;β

X
g¼1

n

Y gMg;β ð3Þ

where B is the set of binding pool nodes in the binding pool,
indexed by β. Zt is the currently active token activation level,
X is type layer 1, and Y is type layer 2. L is the connection
matrix between the type layer 1 and the binding pool, and M
represents the same matrix for the other set of type nodes. N is
the connection matrix between the token layer and the binding
pool with indices t (the currently active token) and β. n
represents the number of type nodes in each type layer.
After encoding, the activity of all of the neurons in the
binding pool is normalized so that the total sum of bind-
ing pool activity is 1.0.

3. Retrieval

3a. Convert cue feature value to type representation

The cue is converted to a type representation in type layer 2 as
described in 2b.

3b. Retrieve token

The type representation for layer 2 is projected through the
binding pool to reconstruct the token associated with it ac-
cording to the following equation. This is done once for each
token Zt:

Zt ¼
X
β¼1

n

BβNt;β

X
f¼1

n

X f L f ;β

X
g¼1

n

Y gMg;β ð4Þ

3b(i). Successful token retrieval

A successful token retrieval occurs when the difference between
the most active token node and the next most active token node
is greater than the token individuation threshold of ς.

3b(ii). Unsuccessful token retrieval

If there is an unsuccessful token retrieval, the model will
randomly select a value from the range [0 360], and the length
of the retrieved vector (i.e confidence) is fixed at 0.

3c. Retrieve type representation

The Zt token is then used to retrieve activity in type 1 layer
using the following equation:

X f ¼ Zt

X
β¼1

n

BβLf ;βNt;β

X
g¼1

n

Y gMg;β ð5Þ

where X represents the retrieved type layer as a population
vector given the current pattern of activity across the other set
of type nodes (Y) and given the current token t .

3d. Convert retrieved type representation to probed feature
value

The reconstructed type node activity across the entire set of
type nodes is then converted back to a single value in the range
[1 360] by representing each type node as a vector at evenly
spaced intervals from this range. To convert the population
code into a single output vector, the type activation vectors are
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converted into Cartesian coordinates and then summated,
using these formulas:

Cx ¼
X
f¼1

n

X f cos f � 36ð Þ ð6Þ

Cy ¼
X
f¼1

n

X f sin f � 36ð Þ ð7Þ

with Cx and Cy corresponding to the summated x and y values
in Cartesian coordinates, respectively; Xf is the length of acti-
vation; and f * 36 is the corresponding degree value of the type
nodes in the retrieved feature dimension.

The resulting vector in Cartesian coordinates is converted
back into polar coordinates to produce a single output vector
consisting of an angle in the range [1 360] and a length, using
these formulas:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cx

2 þ Cy
2

q
ð8Þ

bθ ¼ tan−1
Cy

Cx

� �
ð9Þ

The retrieved angle bθ is interpreted as the model’s feature
selection, and the length ε is interpreted as the confidence, of
retrieval.

4. Change detection

To simulate a change detection task, the model incorporates a
dual-threshold process such that a change is declared only
when a detected change is sufficiently large and the retrieval
process is sufficiently confident about the retrieved value.

4a. Compare retrieved stimuli with probe stimuli

For each stimulus in the probe display a deviation is computed
by taking the absolute value of the difference between the
retrieved value for that location and the probe stimulus value.
The length of the vector of the retrieved stimulus is taken as
the confidence. If both the deviation and the confidence are
above threshold, that particular stimulus is declared as having
changed. The two thresholds are fit against the data from
Keshvari et al. (2013) and vary linearly with set size.

4b. Detecting a change trial

If any single stimulus in a trial is determined to have changed,
the trial is classified as a change trial, regardless of the classi-
fications of the other stimuli.

4c. Categorize trial type

The model’s behavior on a given trial can be interpreted as one
of a hit, a miss, a false alarm, or a correct rejection. Note that if
the model erroneously detects a change for an unchanged
stimulus in a change trial, the trial is recorded as a hit, even
if the stimulus that actually changed was misclassified as an
unchanged item.

5. Continuous report

To simulate a continuous report task, the model uses the angle of
the output vector from retrieval as the reported stimulus value for
a given trial. To divide these responses into precision (measured
as the standard deviation of a von Mises distribution), swaps
(measured as a proportion), and guesses (measured as a propor-
tion), a mixture model is used, as specified by Bays et al. (2009):

p bθ� �
¼ 1 − γ − βð Þϕσ

bθ − θ
� �

þ γ
1

2π
þ β

1

m

� �X
i

m

ϕσ
bθ−θ�i� �

ð10Þ

where bθ is the reported color (in radians), θ is the target color,
γ is the proportion of trials on which the subject guesses, ϕσ
represents the Von Mises distribution with a mean of zero and
standard deviation σ, β represents the proportion of retrieval
errors or nontarget selections, and m as the number of nontar-
gets. θi* is the nontarget color (in radians).

Simulations of Inherent properties

Featural cross talk

To simulate the “magnet” effect of features pulling their
representations toward each other, as in Huang and Sekuler
(2010), we fixed the set size to two items and simulated three
conditions in which the degree separation of the two items was
0, 45, and 90. Ten thousand trials were simulated.

Binding errors

To simulate binding errors fromWheeler and Treisman (2002),
the four threshold parameters for change detection were sam-
pled with a grid search using 4,000 simulated trials for each
location in the grid for both the color-swap and novel-color
conditions. The parameter values used in the grid search
spanned a range of ±25 % relative to each of the four threshold
parameters specified below (i.e., for the length threshold and
deviation threshold). The mean hit rates are computed for set
sizes 3 and 6. Critically, for each comparison between the
binding color-swap and novel-color condition conditions, the
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same parameter values were used for each condition. For this
simulation, the color space was not treated as continuous, since
Wheeler and Treisman used categorically separate colors.
Instead, each type node corresponded to a distinct color.

The effect of confidence on continuous report

Trials are broken into three groups depending on a length
threshold. The length threshold was determined by taking
tertiles of the combined length values of set sizes 1, 2, 4,

and 6, which are the typical within-trial set size manipulation.
Thirty thousand trials were simulated.

Parameters

The model has a total of 11 parameters, 10 of which were free
to vary in fitting the data from Bays et al. (2009) and Keshvari
et al. (2013). The type layer size remained fixed at ρ=10
through all fitting procedures.
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